
I n T h i s I s s u e

V o l u m e  , N u m b e r 

p . 1

Adobe® Acrobat®—

New Features

p . 2

How to Reach Us

p . 8

Developing with

Adobe Photoshop®

p . 1 0

PostScript® Language

Technologies

Adobe Acrobat—New Features

This month, we’ll describe an exciting new feature of the Amber version of Acrobat Reader

and Acrobat Exchange™ (generically referred to in this article as the Acrobat viewer) that

enables your application to display PDF files. Using an Acrobat viewer and the PDFX library,

your application can display PDF files without having the Acrobat viewer display its own win-

dow and menus. This allows your application to provide essentially seamless PDF file viewing

in its windows.

In addition, we’ll provide an overview of some changes to the PDF file format that optimize

performance in on-line situations, and we’ll describe a Web browser system that includes the

PDFX library.

Note: This article describes products that are still in development.Some changes from what is

described here are likely. Nevertheless, we wanted to provide you with information about this

new technology as early as possible.

What is Amber?

Amber is the code name for the next version of Adobe’s Acrobat products. One of the features

of this version is improved support for viewing PDF files in another application’s window.

Pre-release versions of the Amber versions of the Acrobat Reader are available in the Acrobat

section of Adobe’s Web site www.adobe.com/. Look in the Products section and point to

Adobe Acrobat.

What is PDFX?

PDFX is a library that works with the Amber version of the Acrobat viewer. It provides two

main capabilities:

• It allows the Acrobat viewer to render and manage a live PDF document in another appli-

cation’s window (such as a Web browser’s window). All of the normal Acrobat viewer

capabilities such as document scrolling, hypertext links, annotations, and an optional

Acrobat toolbar are available in your application’s window.

• It allows another application to supply the Acrobat viewer with an interface for reading PDF

files from arbitrary data sources such as Web servers.

The PDFX library is quite straightforward to use; it currently contains only eight functions

(although this number will change before the final version ships).

Note: The PDFX library itself does not provide PDF viewing; it merely provides a platform-

independent interapplication communication (IAC) interface between your application and the

Acrobat viewer. Whenever you wish to view PDF files in your application’s window, an Acrobat

viewer must be running.

A PDFX-based system

A system that wishes to use the PDFX library consists of your application, the PDFX library,

continued on page 2

H o w T o R e a c h U s

DEVELOPERS ASSOCIATION HOTLINE:

U . S . a n d C a n a d a :

₍    ₎    -    

M–F, 8 a.m.–5 p.m., PDT.

If all engineers are unavailable,

please leave a detailed message

with your developer number,

name, and telephone number,

and we will get back to you

within 24 hours.

E u r o p e :

+   -   -     -   

FAX :

U . S . a n d C a n a d a :

₍    ₎    -    

Attention:

Adobe Developers Association

E u r o p e :

+  -   -     -   

Attention:

Adobe Developers Association

EMAIL:

U . S .

devsup-person@mv.us.adobe.com

E u r o p e :

eurosupport@adobe.com

MAI L:

U . S . a n d C a n a d a :

Adobe Developers Association

Adobe Systems Incorporated

 Charleston Road

P.O. Box 

Mt. View, CA -

E u r o p e :

Adobe Developers Association

Europlaza

Hoogoorddreef 54a

1101 BE Amsterdam Z.O.

The Netherlands

Send all inquiries, letters and address
changes to the appropriate address
above.

an Amber version of the Acrobat viewer, and the External Window Handler (EWH) plug-in

for the Acrobat viewer. Figure  shows an overview of such a system.

Figure  Overview of Acrobat Amber integration

The PDFX library

The PDFX library provides a cross-platform C language API that allows you to draw PDF files

in your application’s window and support many of the Acrobat viewer’s features such as

displaying bookmarks, thumbnail images, and following hypertext links.

The PDFX library handles the details of the platform-dependent IAC that is used as the

communication mechanism between the PDFX library and the Acrobat viewer, presenting a

platform-independent API for your application to use.

Viewing and other functions

The PDFX library supports two modes for drawing a PDF file into your application’s window:

• In full mode the file can be navigated using the Acrobat viewer’s toolbar.

• In embedded mode, the PDF file is displayed as a part of another file, like a GIF can be

displayed as part of an HTML page.

In addition to displaying the PDF file in your window, your application can ask the Acrobat

viewer to perform a predefined set of operations on the file. This list includes:

• Printing the current PDF file.

• Finding text in the current PDF file.

• Copying the current PDF file’s text or graphics selection to the clipboard.

• Handling a platform-specific event such as a mouse click.

• Deactivating the current session. This is useful, for example, if a PDF file is read from

a remote site and the connection to that site is lost.

2 A D A N e w s V o l u m e  , N u m b e r 

Acrobat—New Features

Acrobat

Viewer

Your

Application

PDFX

Library

EWH

Plug-in

IAC and

Shared Memory

Alternate data sources

The PDFX library optionally allows you to provide the PDF file’s data instead of using a file

system already registered by the Acrobat viewer. You must use this capability if your applica-

tion obtains PDF files from a source other than those supported by the Acrobat viewer’s

registered file systems. For example, you must use this capability if your application retrieves

data from the Web, via a modem connection, from a database, or generates PDF on the fly.

You do not need to use this capability if your application accesses files on mounted disks.

If you choose to provide the PDF file’s data, you register a procedure that the PDFX library

calls each time the Acrobat viewer needs data from the PDF file. Your procedure is passed a list

of one or more requests, each specifying a range of bytes that are needed from the PDF file.

Your procedure must obtain at least these byte ranges and pass them to the Acrobat viewer

using a PDFX library call. Your procedure is free to pass more data to the Acrobat viewer than

the viewer requested. For example, you can send the entire PDF file to the Acrobat viewer if

it is available.

Using PDFX

To use the PDFX library, you must link it into your application, then make calls to it while

your application is running. The steps needed to open a PDF file and draw it in your applica-

tion’s window are:

• Your application makes a PDFX call to initialize the PDFX library and (optionally, as

described in the previous section) specifies a procedure that the Acrobat viewer can call

when it needs data from the PDF file.

• Your application makes a PDFX call to specify a PDF file that is to be displayed.

• Your application makes a PDFX call to send the Acrobat viewer a handle to the window in

which the document will be displayed.

• (Only if you provided a data-reading procedure) The Acrobat viewer sends a message back

to your application via the PDFX library, requesting that your application read bytes from

the PDF file.

• (Only if you provided a data-reading procedure) Your application sends the requested bytes

to the Acrobat viewer using a PDFX call.

• The Acrobat viewer displays the document in your application’s window.

While the document is being displayed:

• Your application makes a PDFX call each time the window into which the Acrobat viewer is

drawing changes size. This notifies the Acrobat viewer that it must redraw the window.

• Your application makes a PDFX call (as needed) to print the PDF file, copy its selection to

the clipboard, find text, or handle an event.

continued on page 4

3 A D A N e w s V o l u m e  , N u m b e r 

Acrobat—New Features

• (Macintosh® only) Your application makes a PDFX call each time an update event or mouse

click occurs in the window into which the Acrobat viewer is drawing. This call passes the

event to the Acrobat viewer to handle.

• (Only if you provided a data-reading procedure) The Acrobat viewer continues to request

bytes from the PDF file as it needs them and your application sends them to the Acrobat

viewer using a PDFX call.

When you wish to close the file:

• Your application makes a PDFX call to stop the Acrobat viewer from displaying in your

window and release any resources associated with that display.

When you are completely done using the PDFX library:

• Your application makes a PDFX call to shut down the PDFX library and release its resources.

The External Window Handler plug-in

The Amber version of the Acrobat viewer includes a new Acrobat viewer plug-in, called the

External Window Handler (EWH) plug-in, which implements the Acrobat viewer’s IAC inter-

face. EWH is the piece of the Acrobat viewer with which the PDFX library communicates.

The EWH plug-in supports simultaneous rendering in multiple windows from one or more

calling applications. The EWH plug-in is not compatible with version 2.1 and earlier of the

Acrobat viewer.

At this point, it’s useful to describe in more detail a system that uses the PDFX library; we’ve

chosen to describe a Web browser, which is a common use for the PDFX library. Before we

can do that, however, we need to describe a few enhancements that are being made to the PDF

file format.

Enhancements to PDF

The Acrobat viewer needs to be able to randomly access a PDF file’s contents in order to read

the resources (fonts, images, etc.) that are required to render a given page. To support this,

every PDF file has an internal cross-reference table that specifies the location of every object in

the file.

In order to provide good performance over relatively slow communication links, it must be

possible to download and view one page of a PDF file at a time, rather than requiring the

entire file (including fonts and images) to be downloaded before any of it can be viewed. Two

enhancements make this possible: file linearization and hint tables.

File linearization

The order of objects within a PDF file can be optimized so that the bytes needed for a single

page are near each other in the file. The data for the first page is placed near the beginning of

the file, allowing the first page to be displayed immediately while the remainder of the file is

downloaded.

4 A D A N e w s V o l u m e  , N u m b e r 

Acrobat—New Features

Note: File linearization is not a change to the PDF file format. The PDF file format allows objects

to be in almost any order.

Hint tables

In order to support page-at-a-time viewing of PDF files, the PDF file format is being enhanced

by the addition of hint tables that indicate which portions of a file are needed to view each

page. Information about the structure of the hint tables will be published in the PDF file for-

mat documentation.

Amber Viewer and optimized/enhanced PDF files

Note: This section assumes your application provides a procedure to read data from a PDF file.

To take advantage of files that have been linearized and to which hint tables have been added,

the Amber version of the Acrobat viewer initially requests the first 1kB of data when a PDF file

is opened. This contains enough information for the viewer to determine which byte ranges

are needed to draw the first page of the file.

The viewer then makes a single call that requests all byte ranges required to view the first

page, and no more. The viewer begins drawing the page as soon as enough data has been

downloaded.

Each time the user goes to a new page, the viewer requests the byte ranges needed to draw that

page, unless they have already been downloaded and cached. The bytes needed may have

already been downloaded either because the user previously visited the page, or because your

application downloaded them in the background and passed them to the viewer while the user

was viewing another page.

Web browsers integration

One common use of the Amber version of the Acrobat viewer is to provide PDF viewing in

Web browsers. This section describes the components of a Web browser system that uses the

Amber version of the Acrobat viewer, and lists several integration issues for improving the user

experience in such a system.

Figure  shows a Web browser system. In addition to the components and requirements men-

tioned previously, the Web system contains a Web server. Also, both the Web browser and the

Web server must have certain features in order to take full advantage of the Acrobat viewer’s

capabilities.

continued on page 6

5 A D A N e w s V o l u m e  , N u m b e r 

Acrobat—New Features

Figure  Acrobat Amber viewer Web integration

Page at a time downloading

As described previously, optimizations and enhancements have been made to the PDF file for-

mat to improve performance over slow communication lines. These allow the Acrobat viewer

to specify, in a single request, all the byte ranges needed to view a page.

Supporting page at a time downloading requires several components:

• Optimized PDF files containing hint tables.

• A Web browser that supports a proposed HTTP extension for specifying byte ranges in a file

to be downloaded.

• A Web server that supports byte range downloading using a CGI script or other mechanism.

Byte range support

The byte range support is based on an IETF Internet-Draft proposal: Byte Range Extension To

HTTP.

Note: This proposal is available from http://ds0.internic.net/internet-drafts/, as

draft-luotonen-http-url-byterange-02.txt

Web server support

To support page at a time downloading, Web servers must be able to service byte range

requests using a CGI script or some other mechanism. Because the Acrobat viewer contains

the intelligence to determine which bytes must be downloaded for each page, the byteserver

CGI script is very simple (less than 100 lines of PERL). Its only responsibility is to parse

the HTTP request, extract the specified bytes from the file and return a properly formed

HTTP response.

6 A D A N e w s V o l u m e  , N u m b e r 

Acrobat—New Features

Acrobat

Viewer

Web

Browser

Web

Server

Byteserver

CGI Script

Hint Tables

Fonts

1Page

xref Table

Optimized

PDF File

IAC HTTP

7 A D A N e w s V o l u m e  , N u m b e r 

Acrobat—New Features

Adobe intends to freely distribute an implementation of the byteserver CGI script. Netscape

and some other server vendors have announced that they are planning to build byteserving

support directly into their Web servers.

If PDF files are not optimized, and the Web server does not handle byte range requests, PDF

files will be downloaded entirely before any pages may be viewed in the calling application’s

window. If the PDF files are not optimized, but the Web server handles byte range requests,

the Acrobat viewer will attempt to approximate page at a time downloading, but without opti-

mal efficiency.

Web browser support

A Web browser must supply a procedure for reading data from a PDF file. In addition, to sup-

port page at a time downloading, a Web browser must be able to issue byte range requests in

response to a request for data from the Acrobat viewer. This allows the Web browser to

retrieve the bytes for an entire page in a single HTTP connection with the Web server. As each

byte range is returned in a multi-part MIME, the bytes should be sent to the Acrobat viewer so

that it can begin incrementally drawing the page as bytes arrive.

Integration considerations

A goal of Acrobat Amber viewer’s integration capabilities is to make PDF files a first class

citizen in the Web browsing experience. To assist this, browsers should integrate PDF files

into their goback stack, so that viewing a PDF file has the same go back semantics as viewing

an HTML file.

Installation is another integration consideration. Ideally, the Amber version of the Acrobat

Reader will be bundled with the Web browser when it is distributed on disk, or the Web

browser will at least prompt the user to download and install the Acrobat Reader when the

first PDF file is encountered on the Web.

Conclusion

The upcoming Amber version of the Acrobat viewer provides exciting new opportunities for

integrating PDF file viewing into your application. Developers who have purchased an

Acrobat SDK can apply for pre-release copies of the PDFX library and documentation in

order to get a head start on developing products that use the library. Contact the Adobe

Developers Association for more information or to purchase the Acrobat SDK. §

8 A D A N e w s V o l u m e  , N u m b e r 

Cross-application plug-in development

For many developers, expanding their plug-in to work

in other applications across different markets seems cumber-

some. Accounting for different code resources and requirements

of multiple applications is a real burden for small, taxed

research and development departments.

It doesn’t have to be that way. Currently, a Filter plug-in

module written to the Adobe Photoshop 3.0.5 Application

Plug-in Interface (API) specification works with five different

Adobe applications, expanding your opportunities beyond

Adobe Photoshop software’s primary “imaging and design”

market.

Cross-application plug-in development is a win-win situa-

tion. We estimate that with 10-20% more development time

for tasks such as adding specific resources and providing

alternate code for older host-versions, a plug-in written for

the Adobe Photoshop application can be optimized for the

After Effects™, Adobe Illustrator®, PageMaker®, PhotoDeluxe™

and Adobe Premiere® products. That’s an excellent return on

your R&D investment—it’s a great win for customers, who

can use your plug-ins with all their graphics applications.

This column begins with our recommended cross-applica-

tion plug-in development approach, and charts the current

status of which API structures are supported by Adobe

graphics applications. Future columns will provide more

detailed instructions for adapting a plug-in to a specific

application. If you just can’t wait that long, all this informa-

tion is available in the Adobe Photoshop Software

Development Kit (SDK), and the individual SDKs for other

Adobe products.

The different SDKs are available from Adobe’s web site:

www.adobe.com. Look in the Support & Services section and

point to Developer Relations.

We recommend you follow the process for cross-application

plug-in development outlined in Table 1.

Adobe Photoshop

Developing With

Table 1: Process for cross-application plug-in development

Step Process Example

1 Assess and determine the problem your We need a Filter plug-in that makes every Nth pixel a
plug-in will solve. specified color.

2 Acquire the primary SDK for your base Download the Photoshop SDK from www.adobe.com. Look
development. in the Support & Services section and point to Developer

Relations.

3 Examine the examples and read the API Read the initial chapters and the chapter on Filters in the
specification in the primary SDK. Photoshop SDK. Browse through PIFilters.h, PIGeneral.h

header files; read through example code for the Dissolve filter.

4 Determine your development strategy for your We’ll produce a plug-in for both PPC and 680x0 machines,
base application. and we need it to work with version 2.5.

5 Read the information in the Plug-in Resource Originally, we were only going to parse filterRect and
Guide.pdf, the Cross-Application Plug-in apply our coloring function. We’re interested in dynamic
Development Resource Guide, with the needs resources, and are considering other features.
of your plug-in in mind.

6 Reassess your development strategy for your Our programming goals have changed to include extensibility
base application. for changing saturation levels over a period, such as in

a QuickTime® movie. We will need to modify our initial
approach to include variables for saturation, instead of
static values.

Table 1: Process for cross-application plug-in development (cont.)

Step Process Example

7 Determine any host requirements for the other Because we want to be compatible with version 2.5, we will
target applications. need to include alternate code that does our job without

using the newer callback suites. We also need to make our
saturation variable accessible to the dynamic resources that
are used by the After Effects and Adobe Premiere applications.

8 Create and program your plug-in. “NthPixelChange” by MySoftware, Inc.

9 Test under your base application. Test “NthPixelChange” with the Adobe Photoshop 3.0.5 software.

10 Program and optimize based on your We found that we can use the Image Services suite more
testing results. extensively to help us calculate our changed pixels resulting in

increased efficiency.

11 Test under the other target applications. We added the 'ANIM' and 'FltD' resources and tested in the
After Effects and Adobe Premiere software.

12 Modify and optimize based on those results. Adobe Premiere doesn’t support the Image Services suite, so
we created a check and a branch to implement our original
code, if the suite is unavailable.

13 Implement your beta-testing program. A handful of associated development partners were given our
plug-in to test.

14 Reassess and modify as needed. Our beta testers reported bugs and we fixed the errors.

15 Package and release your product. Initial product roll-out.

Table  is a list of Adobe applications that support the API outlined in the Adobe Photoshop 3.0.5 SDK. Refer to the Plug-in

Resource Guide.pdf or the individual product SDKs for specific implementation issues and emulation caveats.

Table 2: Adobe Photoshop API host emulators

Software Photoshop API version supported Photoshop modules supported

After Effects 3.0 Filter, Format

Adobe Illustrator 3.0.4 subset; Mac® only. Filter, Format

PageMaker 3.0.4 Filter

Adobe PhotoDeluxe 3.0.4 LE Acquire, Export, Filter, Format

Adobe Premiere 2.5 Filter

In future columns, we’ll discuss specific implementation issues with the different major Adobe applications and offer detailed

guidelines for making a plug-in forward- and backward-compatible. §

9 A D A N e w s V o l u m e  , N u m b e r 

10 A D A N e w s V o l u m e  , N u m b e r 

Creating Color Separations in the RIP
A number of PostScript output devices, including all Level 2

imagesetters, are capable of color separating composite

PostScript language files in-RIP (raster image processor).

In this month’s column, we give step-by-step instructions

and sample code for separating a PostScript language file

into CMYK process color plates on these types of devices.

Determining that in-RIP separations are available

First, to determine whether the device you are printing to is

capable of in-RIP separations, you may send the following

code to the device:

/setpagedevice where { % on a Level 2 device
pop
2 dict begin

% set things up to avoid a configuration error
/Policies 1 dict dup /Separations 1 put def
% and request separations

/Separations true def
currentdict end
setpagedevice

% check for Separations entry in the
% page device dictionary

currentpagedevice /Separations known

}{ % on a Level 1 device
false

} ifelse
== % send value to back-channel

A value of true, returned by the above code, indicates that the

output device is capable of creating separations in the RIP.

If your application or driver does not have bi-directional

communication with the printer, you may parse its PPD file

to check for the separations functionality. A *Separations key-

word value of true indicates that in-RIP separations are sup-

ported; false indicates that in-RIP separations are not sup-

ported. You may also check the value of the *LanguageLevel

keyword; if it is ‘1’, then the device is not capable of in-RIP

separations. If the *Separations keyword is absent from the

PPD file, and the *LanguageLevel value is greater than ‘1’, it may

be very difficult to reliably determine whether or not a device

supports in-RIP separations. For this reason, you may want

to add a user-interface to your application to allow users to

choose between RIP-based and host-based separations.

Steps to produce color separations

After you’ve determined that the destination output device

supports in-RIP separations, you may print the color separa-

tions by adding a few lines of set-up code to the composite

PostScript language file, and sending it to the printer. The

code must do the following:

1. Set the page device Separations key to true.

2. Set the page device ProcessColorModel key to /DeviceCMYK.

3. (optional) Set the page device SeparationColorNames array to

the list of all process or custom (spot) color inks that your

document contains. The names of the colorants of the native

color space are included implicitly, regardless of the contents

of the array; thus, the empty array [] is equivalent to

[/Cyan /Magenta /Yellow /Black], after you have performed

step 2, above.

4. (optional) Specify which separations to produce and the

order that the separations should be output in, using the

SeparationOrder page device key. Legal values are the names of

the colorants of the native color space, as well as any addi-

tional names in the SeparationColorNames array. An empty array

[] requests that separations for all colors of the native color

space, as well as all additional colors in the SeparationColorNames

array, be produced in some unspecified order. In our exam-

ple below, we request that only the cyan and black process

color separations be produced, in that order.

The setpagedevice requests in steps  through  should all

be performed in one call, as shown in the example below.

All of the setpagedevice keys referenced above are described in

detail in the “PostScript Language Reference Manual

Supplement” for versions 2014 and later, available from

our web site:

www.adobe.com.

Look in the Support & Services section and point to

Developer Relations.

PostScript

Language
T e c h n o l o g i e s

11 A D A N e w s V o l u m e  , N u m b e r 

Benefits of in-RIP separations

Two benefits of using in-RIP separations are:

• Less data to send to the printer than with host-based

separations.

Regardless of the number of desired separations, the origi-

nal composite job need only be sent to the printer one

time. For instance, Example  describes a page containing

two process colors: cyan and black. The composite page

description is sent only once, and the output device pro-

duces two separations from this data, as shown in Figure .

• Flexibility in the types of documents that can be separated.

Our Example  document contains objects painted with

process colors; however, the technique described in this

column may be used to separate any PostScript language

file, regardless of the color space used for painting.

Documents containing objects painted in RGB, a device-

independent CIE-based color space, or any other color

space supported by the PostScript language, can all be sep-

arated into CMYK process color separations by using the

set-up code shown below.

Sample Code and Output

Example 1: Level 2 in-RIP separation example

%!
%%BoundingBox: 100 100 172 172
%%DocumentNeededResources: font Times-Roman
%%+ font Helvetica
%%DocumentProcessColors: Cyan Black
%%EndComments
%%BeginProlog
%%EndProlog
%%BeginSetup
%%EndSetup
%%Page: 1 1
%%BeginPageSetup
% The following setpagedevice call performs steps 1, 2
% and 4. Step 3 is unnecessary for our example.
<<

/Separations true
/ProcessColorModel /DeviceCMYK
/SeparationOrder [/Cyan /Black]

>> setpagedevice

%%EndPageSetup
%%BeginDocument: (testfiles/file1)
%!PS-Adobe-3.0
%%BoundingBox: 100 100 172 172
%%DocumentProcessColors: Cyan Black
%%DocumentNeededResources: font Times-Roman
%%+ font Helvetica
%%EndComments
%%BeginProlog
%%EndProlog
%%Page: 1 1
%%BeginPageSetup
/pgsave save def
%%EndPageSetup
% The remainder of the code describes a black
% box with 4 rotated lines on it. The lines are
% painted with shades of cyan, ranging from
% 0% to 90% ink coverage, as shown in Figure 1.

100 100 translate
gsave

72 120 div dup scale
60 60 translate
newpath -60 -60 moveto 120 0 rlineto
0 120 rlineto -120 0 rlineto closepath
0 setgray gsave fill grestore
1 setlinejoin 1 setlinecap
0 1 3 { % for

0.3 mul 0 0 0 setcmykcolor
5 setlinewidth
newpath 50 -10 moveto
-40 40 rlineto stroke
90 rotate

} for
grestore
%%PageTrailer
pgsave restore showpage
%%Trailer
%%EOF
%%EndDocument
%%Trailer
%%EOF

continued on page 12

Figure  Composite and Separation output produced from Example 

Beyond CMYK separations

Example  shows how to create CMYK process color

separations in-RIP from an arbitrary composite file. For

issues concerning files that contain custom colors or over-

printed inks, as well as guidelines for producing PostScript

language files that are compatible with Level 1 host-based

separation programs, please refer to technical note #,

“Color Separation Conventions for PostScript Language

Programs” available on our web site at: www.adobe.com.

Look in the Support & Services section and point to

Developer Relations. §

12 A D A N e w s V o l u m e  , N u m b e r 

P o s t S c r i p t T e c h n o l o g i e s

Composite 		
Cyan Plate		
Black Plate 		

C o l o p h o n

This newsletter was produced entirely

with Adobe PostScript software on

Macintosh® and IBM® PC compatible

computers. Typefaces used are from

the Minion® and Myriad® families

from the Adobe Type Library.

Managing Editor:

Jennifer Cohan

Technical Editor:

Nicole Frees

Art Director/Designer:

Karla Wong

Contributors:

Tim Bienz, Andrew Coven,

Nicole Frees

Adobe, the Adobe logo, Adobe Illustrator, Adobe

Premiere, Acrobat, Acrobat Exchange, After

Effects, Minion, Myriad, PageMaker,PhotoDeluxe,

Photoshop, PostScript, and the PostScript logo are

trademarks of Adobe Systems Incorporated.

Macintosh and QuickTime are registered trademarks

of Apple Computer, Inc. IBM is a registered trade-

mark of International Business Machines

Corporation.

©1996 Adobe Systems Incorporated.

All rights reserved.

Part Number ADA00643 4/96

	Acrobat—New Features
	How To Reach Us
	Developing with Photoshop
	PostScript Column

